MASER FREQUENCY STABILITY

Richard C. Mockler and James A, Barnes
National Bureau of Standards Boulder Laboratories

The frequency stability of an ammonia maser is ordinarily quite high
for periods of a few minutes. However, to preserve this stability for long
periods of time - hours and days - requires rather careful control of the
parameters of the system which affect the frequency - in particular the pres-
sure, focuser voltage and cavity temperature. We have had some success
with these problems.

Method and Results of Long Term Stability Tests

In order to facilitate frequency comparison and also to gain the
greatest possible use of the high stability of the maser, it has proved useful
to use the maser as a stabilizing device for a frequency multiplier chain.

We then expect that at any point along the chain we may take signals at useful
power levels, and these signals will have stabilities closely approaching that
of the maser itself.

A block diagram of the maser stabilized chain is shown in figure 1
together with auxiliary apparatus for the purpose of comparing a 5 Mc helium
cooled crystal oscillator with the stabilized chain. The servo time constant
is about 0. 1 millisecond. Figure 2 shows a comparison of a helium cooled
oscillator with the maser stabilized chain; the maximum drift in relative
frequency over a two hour period was about 2 X 10-11, In these experiments
the maser cavity temperature was controlled to within . 001°C with two pro-
portionally controlled thermostats - one inside the other.

Figure 3 shows some of the best frequency comparisons that we have
succeeded in making between two masers. The cavity temperatures were
controlled with an ice-water mixture in this recording. The high stability
indicated was only observable for periods of several minutes.

A recent comparison between the two masers - both provided with
cavity temperature control within . 001°C - is shown in figure 4. The
fluctuations displayed in this recording are about a factor of 10 worse than
those of figure 3. In this preliminary comparison the frequency fluctuations
are attributable to corresponding fluctuations in the residual gas pressure.
This condition did not exist during the time of the recording of figure 3, and
can be remedied. In spite of these fluctuations in the pressure, the frequency
variations between the two masers were held within 1 X 10~ 1! (on the average)
over a 6 hour period.

The variation of the maser frequency with the indicated parameters
for our machines are shown below. These variations were measured with
the maser adjusted for optimum signal:
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1. Focuser voltage variations.

With the focuser voltage maintained at 30 kv, a 6v variation in
voltage produces a frequency variation in the maser of 1 X 10-12,
The high voltage power supply is stable to about 2 volts after a one
hour warm up period. During the first hour the voltage changes
about 12v.

2. Cavity temperature variations.

A variation of 1°C in the cavity temperature changes the fre-
quency by 1 X 10-8, The cavity thermostats have a measured
temperature control of at least +,001°C. Frequency fluctuations
resulting from temperature variations should not exceed 1 X 10-11,

3. Source pressure variations.

For optimum signal our machines have a source pressure of
about 0.2 mm Hg. A variation of 1.5% in this pressure produces a
change in frequency of 5 X 1010, Our devices for measuring the
source pressure are not sufficiently sensitive to detect any source
pressure changes under normal operation.

4. Residual gas pressure variations.

Variations of 25% in the residual gas pressure (at a pressure
of about 4 X 10~ mm Hg) produce a frequency variation of about
4 X 10-10, 1t is this kind of variation that is apparently causing
most of the fluctuations in figure 3. Variations in the pressure
of about 1% are observable. Any changes in pressure below the
observable level contribute fluctuations in frequency no greater
than 1 X 10-11,

These observations of maser stability indicate to us that the maser is
quite capable of maintaining a high degree of stability over long periods of
time. Our apparatus is suited to observing stability over periods of a few
hours but is not convenient for making observations over periods of days,
since the small cold traps of our machines require regular tending. A maser
designed without traps or with more suitably designed traps together with a
V"tight" vacuum system would, in our opinion - solve the remaining problems
and permit the masers to operate for weeks within narrow frequency limits.

An Application of the Maser's High Short Term Stability

The maser has been used to measure the stability of a crystal oscil-
lator for time intervals as short as 30 milliseconds. The method of compari-
son is shown in figure 6. A sample of a recording is shown in figure 5. The
analysis of the recordings was made by measuring the separation in time of
the successive points where the curve passes through zero. Let A7v; be the

1
2AT;
the time interval AT;) between the 30 Mc reference signal f ref., and the 30 Mc

ith such time interval, then

= fi is the mean difference frequency (for
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maser-chain difference signal (f chain - f maser). Table I shows the RMS
variation in the mean frequency of contiguous time intervals.

The same data can be used to estimate the effect of excitation instabil-
ity on the resonance signal of an atomic beam machine. We can describe
qualitatively how the instability of the excitation (multiplier chain) effects the
detected signal in the following way: Consider an atomic beam machine
employing Ramsey type excitation and suppose that the frequency of the
excitation changes slightly, due to some sort of instability,during the time
that it takes an atom to pass from the first oscillating field to the second.
The atom sees a relative phase shift between the two fields as a result of
this variation in frequency. Atoms that see no relative phase difference -
that is, atoms that see a phase in step with their own precessional motion in
both oscillating field regions - have a maximum probability of transition.
Atoms that see a phase difference of £ v radians between the two fields have
a minimum probability of transition, and in general, a distribution in phase
differences will tend to smear out the Ramsey pattern. Larger phase dif-
ferences can be expected for longer transit times, and under conditions of
very long transit times, or very poor frequency stability (or both), the
Ramsey pattern will be smeared out so badly that only the broad Rabi line
shape will remain.

In order to make a quantitative estimate of the effect of excitation
instability on the resonance curve it is necessary to average the transition
probability over the appropriate phase distribution (in addition to the usual
average over the velocity distribution). If Pjj is the probability of transition
between states i and j written as a function of the relative phase difference §,
we wish its average over the distribution in phase p(6). More specifically we
require

+oo

where 6 is the phase difference that - to the atom - appears to exist between
the two oscillating fields. As a reasonable choice of the phase distribution
function, we assume it to be Gaussian. That is, we let

-(5-9)°
p(6) = ——— ¢ 26°
2
(2wo )

* N.F.Ramsey, Molecular Beam (Oxford University Press, London, 1956).

P. Kusch and V. W, Hughes, "Atomic and Molecular Beam Spectroscopy, "
Encyclopedia of Physics, Vol.37, Springer-Verlag, Berlin 1959.
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where 0'2 = (6-9) 2 and § = 0 for our particular problem. It is also neces-

sary to average (Pij)ﬁ over the velocity distribution in the beam. We must

calculate
[o's} 5 yz
= 2 B
(g = 2§ 7’ T e
where y = v/a,
v = velocity,

a = most probable velocity.

The computed curves for different values of o are shown in figure 7. Values
of ¢ for different transit times were obtained from the data of the sort indi-
cated in figure 5. The frequency difference [ (f chain - f maser) - f ref]
was adjusted such that the average of the A-ri' s, AT, corresponded to the
atomic transit time of interest. The progression in phase in the time AT

is m( Z——) AT = ¢i for the ith time interval. The "discrepancy'" in the phase
T
i —
change that occurs in the transit time At during the time interval AT, is

given by 6i = |¢oi 1" ¢i|. The average of the Giz's was used as an estimate

for 0'2. Values of ¢ are tabulated for different values of this transit time in
Table II together with the distance of separation of the two oscillating fields
for the particular transit time. The values given are representative values
for the crystal oscillator and multiplier chain tested.

As the length of a beam machine is increased in an effort to improve
its accuracy, the transit time becomes longer, and the frequency instability
tends to decrease the amplitude of the Ramsey pattern to a larger degree.

It might first be supposed that a correction signal could be derived from the
atomic transition and - by means of a servo system - eliminate the fluctuations
adequately. This scheme becomes less useful, however, as the transit time
increases. The servo requires a modulation of the signal, and obviously the
period of the modulation cannot be less than the flight time of an atom between
the two oscillating fields. As the flight time is increased the modulation
frequency must be reduced, and this necessitates a corresponding increase

in the time constant of the servo network. The crystal oscillator will have

its free running instability for periods within this time constant.

An obvious solution, if one is wealthy enough to make beams forty

feet long or more, is to stabilize the excitation with an ammonia maser,
The maser servo time constant is relatively short.
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TABLE 1

Multiplier Chain Frequency Stability. *

RMS value of the Mean time, Total tirme
1st differences in e interval
frequency. N of measurement,
N A 1 N
1 2 T = Z AT .
2 f - P i =
N/éﬂ-_lizl(if'ﬁl) ’ Ni=1 1 T izzlATi’

{in seconds).

measured in parts (in seconds).

in 1010,
2.0 . 030 85
1.0 . 069 85
0.83 . 092 85
0.76 . 14 85
0. 64 .28 85

*The values given in Column 1 give an indication of the continuity and
smoothness of the frequency variations occurring between contiguous time
intervals At;. The standard deviation of the frequency (not the lst differ-
ences) was about 8 X 101! for the 85 seconds of measurement.
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TABLE II

Standard Deviation, o, of Phase Differences
Experienced by Atoms of the Beam.

o' 12 Transit Corresponding Total
measured predicted time, oscillator time over
in radians for 9193 Mc A field which o

at 23, 900 Mc. 9193 (in seconds). separation is averaged,
[0' =m o'} L (cm). T
! 4 cm |[(in seconds).
. . a=2X10 .
(in radians). sec
0.51 0.20 . 030 600 85
0. 54 0.21 . 069 1380 85
0. 67 0.26 . 092 1840 85
0.80 0.31 .14 2800 85
1.4 0.52 .28 5600 85
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